Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J R Soc Interface ; 19(187): 20210833, 2022 02.
Article in English | MEDLINE | ID: covidwho-1706677

ABSTRACT

Speaking and singing are activities linked to increased aerosol particle emissions from the respiratory system, dependent on the utilized vocal intensity. As a result, these activities have experienced considerable restrictions in enclosed spaces since the onset of the COVID-19 pandemic due to the risk of infection from the SARS-CoV-2 virus, transmitted by virus-carrying aerosols. These constraints have affected public education and extracurricular activities for children as well, from in-person music instruction to children's choirs. However, existing risk assessments for children have been based on emission measurements of adults. To address this, we measured the particle emission rates of 15 pre-adolescent children, all eight to ten years old, with a laser particle counter for the test conditions: breathing at rest, speaking, singing and shouting. Compared with values taken from 15 adults, emission rates for breathing, speaking and singing were significantly lower for children. Particle emission rates were reduced by a factor of 4.3 across all conditions, whereas emitted particle volume rates were reduced by a factor of 4.8. These data can supplement SARS-CoV-2 risk management scenarios for various school and extracurricular settings.


Subject(s)
COVID-19 , Singing , Adolescent , Adult , Aerosols , Child , Humans , Pandemics , SARS-CoV-2
2.
Sci Rep ; 11(1): 14861, 2021 07 21.
Article in English | MEDLINE | ID: covidwho-1338546

ABSTRACT

In this study, emission rates of aerosols emitted by professional singers were measured with a laser particle counter under cleanroom conditions. The emission rates during singing varied between 753 and 6093 particles/sec with a median of 1537 particles/sec. Emission rates for singing were compared with data for breathing and speaking. Significantly higher emission rates were found for singing. The emission enhancements between singing and speaking were between 4.0 and 99.5 with a median of 17.4, largely due to higher sound pressure levels when singing. Further, significant effects of vocal loudness were found, whereas there were no significant differences between the investigated voice classifications. The present study supports the efforts to improve the risk management in cases of possible aerogenic virus transmission, especially for choir singing.

3.
PLoS One ; 16(2): e0246819, 2021.
Article in English | MEDLINE | ID: covidwho-1076271

ABSTRACT

Since the outbreak of the COVID-19 pandemic, singing activities for children and young people have been strictly regulated with far-reaching consequences for music education in schools and ensemble and choir singing in some places. This is also due to the fact, that there has been no reliable data available on aerosol emissions from adolescents speaking, singing, and shouting. By utilizing a laser particle counter in cleanroom conditions we show, that adolescents emit fewer aerosol particles during singing than what has been known so far for adults. In our data, the emission rates ranged from 16 P/s to 267 P/s for speaking, 141 P/s to 1240 P/s for singing, and 683 P/s to 4332 P/s for shouting. The data advocate an adaptation of existing risk management strategies and rules of conduct for groups of singing adolescents, like gatherings in an educational context, e.g. singing lessons or choir rehearsals.


Subject(s)
Aerosols/analysis , COVID-19/epidemiology , Singing , Speech , Adolescent , COVID-19/transmission , Disease Outbreaks , Environmental Monitoring/instrumentation , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL